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J .  P H Y S .  A ( G E K . .  P H Y S . ) ,  1 9 6 9 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

The exact static exterior and interior metric of a 
thick plane plate 

J. HORSKY and J. NOVOTNY 
Department of Theoretical Physics, Brno University, Kotlh-skh, Brno, Czechoslovakia 
AllS. receiced 10th December 1968 

Abstract. The exact static exterior and interior solution of Einstein’s equations for a 
plane thick disk is obtained. It has been shown that the corresponding energy-mo- 
mentum tensor fulfils the generalized O’Brien-Synge junction conditions. The 
correspondence of this tensor to the surface energy-momentum tensor of a thin plane 
plate is demonstrated. Our disk being neither yery thick nor very dense, we have also 
obtained a connection with the Newtonian theory. 

1. Introduction 
Kuchowicz (1968) asserted that only a few exact solutions of the gravitational field 

equations for space filled with matter exist. In spite of many published papers concerning 
the spherical and cylindrical symmetries in general relativity (e.g. Harrison e t  al. 1965, 
Bonnor 1965, Banerji 1968, Langer 1968) one cannot conclude that plane symmetry is less 
interesting. Its detailed study, however, has not been so intensive. 

Some conclusions about thin plane plates (plane shells) were made by Horsky (1968). 
The author employed some general conclusions of Israel and Kuchaf (Israel 1966, Kuchaf 
1968) and showed that the metric of a thin plane shell has the form 

( 5 bx + C)4/3 b =  - 3 % ~  
C = l  ( * bx  + ( 3 4 ’ 3  

- ( * bx + C) -2j3 

under the assumptions that it is made of a perfect fluid at rest and that the shell is situated 
in the coordinate plane x1 = 0. The surface energy-momentum tensor is 

and it was shown that there must be a very strong tension 

in our shell. 
The  notation is that of Israel (1966). It should be noted that the Greek subscripts 

assume the values 1-4 and the Latin ones 2-4. The signature of the fundamental quad- 
ratic form is (1, 1, 1, - l), x4 = t ,  c = G = 1, K = 877; the Einstein equations are of the 
same form as they are in Mdler’s (1961) textbook. 

2. The finite number of the plane shells 
By a convenient choice of the origin on the x axis we can achieve an arbitrary value of 

the constant C. If we measure the x coordinate from the singularity surface we have 
C = 0 and 

(1) p = -1 4 G+ 
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As in the previous notation we let X+ represent the limiting value of the x coordinate as we 
approach the shell from the right (the meaning of x- is obvious from this). The  constant 
b may differ on each side of the shell ( b + ,  b - )  in the general case. This can be easily seen if 
there is more than one shell in space. 

In  our system of coordinates 
4 g,, = 1, 4g,l = 0 

and the extrinsic curvature tensor of the shell is given by 

This tensor ‘jumps’ when passing through the shell and it is necessary that 

Y i k  = Kik’ - K i k -  E [ K i k ]  = - 877(t,k-&giktaa). 

I t  follows from (3) that 

y22 = y33 = -1 2 K U ’  y 4 4  = &(2p + U) 

while from (2) one can obtain 
1 1 

y 4 4  = - - -* 
2 2  

y22 = y33 = - -+--, 
3x- 3x 3x- 3x+ 

If we compare (4) and ( 5 )  we have 

If we impose the condition that these equations are valid simultaneously, we can conclude 
that 

p =  - -  
4 

which is in agreement with (1). Let us now consider a static system of n thin plane shells 
( n  denotes a natural number) that is symmetric with respect to the shell denoted by 0. 
Let the distance 6 between any two of the shells be constant. I t  is convenient to introduce 
the notation 

xo = X0+, x, = XI+, ...) xm = X,+ 
and similarly 

bo = b o + , b l  = b l + ,  ..., 6, = bm+. 
The gravitational field is subject to the conditions 

U 

[gab1  = 0 
and to those given by (3). From them we obtain 

KOm 
m 

= +.)* 
-- 

2 2 
3xm- 3x,+ 2 ’ 

b m -  Ixm- I = bm+ ,xm+ 1 
Because of the symmetry of the system (xo- = -xo+) we have 

-8 
3KU 

xo X0+ = -. 
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and from ( 7 )  one can obtain the recurrence formulae 

3. The transition to a thick and static plane plate 

E(.) is a given function (a space density of matter in the plane disk). 
Let us take the limit for 6 --f 0 in (9) and (10) in such a way that u/S -+ E(x), where 

Let us calculate from first principles the derivatives 

= 1 + q K E ( X ) a y X ) .  
and 

~ ; d  -+E<xj ui6 + E ( x )  

= - iKE(x)b(x)a(x)* 
The  solution of (1 1) is 

b = C exp ' - 2~ [ E(x)a(x) dx I *  
where a(.) is given by the equation 

da  
dx 
_ -  - 1 +iKE(x)a2(x) 

I 

under the condition 
lim a(.) = - tc 
x *o+ 

following from (8). 

can also be written in the form 
Let the thickness of the disk measured along the x axis be 2L. The interior solution 

and for the exterior solution we have 

F(L,  x) = b(L)(a(L)+x-L}. 

The  explicit forms of this solution can be easily obtained for E = constant (homogeneous 
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plane disk). From (13) it follows that 

.i,d. = J a  da 

- 1 + @ E a 2  
so that 

2 
U(.) = - -~ CO t (&( ~KE)~"x} .  

b ( x )  = K'  sin ( & ( ~ K E ) ~ ' ~ X )  

( 3KE)liZ 
Equation (12) gives 

and the interior solution is 
0 

[ G( x)] 4:3 

g a d X )  = [ [ G( x)] 4!3 ] 1'1 
- [G(x ) ] -~ '~  

A constant K' is not yet determined. After a simple transformation 

one can write the interior solution in the form 

/1 o \  

\ 0 - [COS{&(3KE)lh)] - 2 3  I 
4. The energy-momentum tensor 

tensor of a thick and homogeneous plane disk. 
Following Synge's 'g-method' (Synge 1960) let us calculate the energy-momentum 

From (15) it follows that the non-zero I?&, are 

1 1 rZ2 = I'33 = -4g22,1 = ( $ ~ ~ ) ~ ' ~ [ c o s { ~ ( 3 ~ ~ ) " " x ) l ' : "  s i n { & ( 3 ~ ~ ) l ' ~ x }  

I?44 = -&g,,,, = B(hK€)1i2[COS(~(3K€!1 2x}]-5f3 S ~ I - ( ~ ( ~ K E ) ~ ~ ~ X }  1 

2 3 
= rln = 4.g33,9.33,1 = - ( + K E ) ~ ' ~  t a n ( + ( 3 ~ ~ ) ~ % )  

For the mixed Ricci tensor RUB we have 
- $KE 

KE 
R,R E g65Rda = 

so that 
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Immediately from the Einstein equations (Gap = - KT,,) we obtain 

25 5 

0 

TUB = - RB - $ a a 4 ~  = [ -a. -(I. K 

It can be easily proved that the generalized O'Brien-Synge junction conditions (Israe 1 
1966) 

G,Bm"mB I + = G,pamB I - 
Gcr&a,amBI + = G,sl(a,amBI - 

are satisfied. I t  is necessary only to take into consideration that $ 1  + = 0, T,1 = 0, ma = 8: 
and l(a)a = aaa at the point x = L. 

5 .  Remarks 
(a) Some objections to the interpretation of our Tab may exist. To remove these let us 

perform 'the inverse' limiting transition to the surface energy-momentum tensor tik, For 
the t44 component we have 

t,, = lim 
X O + d  (5 

T,, dx = lim / -(COS ax)-2 i3  dx 
6-10 xo 6 d -to 

so that 

U 
= lim-(cos zx0)-2j36 =  COS a ~ ~ ) - ~ , ~ ~  

6 - 0  6 

t44 = g44t4, = - U  

as was expected. For the other components of tik the calculations are similar. 
(b )  The essential singularity of the exterior solution is at the point 

x = L - a(L). 

Indeed, for our singularity to lie outside the disk it must be 

If the relation 

holds, there is a singularity outside the disk. For 

9(3KE)lt2L = 8, 
the singularity is shifted to the surface of the disk. If the argument increases again 
( g ( 3 ~ ~ ) l ' ~ L  > +T), the essential singularity will appear in the interior solution too. 

(c) Let us compare our results with those in the Newtonian theory. We shall calculate 
the acceleration of a free probe particle immediately above the disk. If this particle starts 
with zero velocity it will move along the straight line y = const., z = const. At this 
moment its acceleration (measured by a standard clock at rest at this point) is given by 

1 - _ _ _  d2x 
dr2 3 a ( ~ ) '  

grel = - ~ ( ~ K E P ~  t a n ( i ( 3 ~ ~ ) ~ ' ~ L ) .  

Let + ( ~ K E ) ~ ' ~ L  < 1, so that tan{+(3~~)'!~LL) N 4 ( 3 ~ e ) ~ ' ~ L  and 

- gl%l = - 
Using (14) we obtain 

grel = - i K E L  = -2VEL. 
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Let the homogeneous plane disk (of thickness 2L) have the same density in the Newtonian 
theory. By direct use of the Gauss theorem it can be easily shown that the acceleration of 
the probe particle is given by the expression 

gclas = - 4mL. 
The two values for g are not the same. This result can be explained in the following way: 
according to Landau and Lifshitz (1967) the total energy of matter and the static gravitational 
field is 

Let us calculate the total energy of a (abstract) piece of our disk. Because ( -g)1!2 2 1, we 
obtain 

i k ? ~  J(T22+T33-T44)dV = & J d V = & V .  

The Newtonian density of matter is the relation between the total mass and its volume. 
We have shown that this factor is $E (and not E). We obtain, in this case, 

and so 
gcias = -2mL 

gclas = &“I* 

This very interesting correspondence holds in our approximation only. 
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